PROGRAMME
• Introduction: Mathematical Programming, Convex Programming, Linear Programming.
[2] pag. 3-8
• Models: models of (Integer) Linear Programming.
[5]
• Essentials on Linear Programming: geometry of Linear Programming (vertices and basic solutions), Simplex Method; Duality in Linear Programming: Dual Problem, fundemantal properties, economic interpretation.
[2] pag. 21-27, pag. 51, pag. 54-58
• Essentials on Integer Linear Programming: Unimodularity, Branch and Bound Method.
[2] pag. 73-80, pag. 92-94
• Particular Cases and Alternative Solutions (cf. [5] for the respective models):
- Minimum Cost Path Problem: Djikstra Algorithm;
[2] pag. 137-144
- Project Planning Problem: PERT Method;
[2] pag. 147-152
- Maximum Flow Problem: Ford and Fulkerson Algorithm, Edmonds and Karp Algorithm;
[2] pag. 152-159
- Production Planning Problem: Wagner and Whitin Method;
[4] pag. 327-340
- Plant Location Problem: Local Search Algorithms.
[4] pag. 269-277
REFERENCE TEXTS
[1] R. Baldacci, M. Dell’Amico, Fondamenti di Ricerca Operativa, Pitagora Editrice Bologna (2002) (in eventuale alternativa a [2]).
[2] M. Fischetti, Lezioni di Ricerca Operativa, Ed. Libreria Progetto Padova (1999).
[3] S. Martello, M.G. Speranza, Ricerca operativa per l’economia e per l’impresa, Società Editrice Esculapio (2012) (in eventuale alternativa a [2]).
[4] A. Sassano, Modelli e algoritmi della ricerca operativa, Ed. Franco Angeli (1999).
[5] material on the DEC (Department of Economy, Pescara) website