1. Basic characteristics of living matter. In particular, to be able to describe:
- the general characteristics of the various living organisms
- the need for the existence of a flow of intracellular information between cells and between multicellular individuals.
-the theory of evolution as a unifying concept of biology.
- the importance in the biology of the hierarchical organization (classification system)
- the need for a continuous supply of energy in biological systems.
- the importance of acquiring a scientific method.
2. Basic characteristics of atoms and molecules that form the basis of the chemistry of life. In particular, to be able to describe:
- the structure of atoms, of the molecules and their respective ability to interact (chemical bonds and molecular interactions).
- the importance of water for carrying out vital functions.
-the chemical-physical and biological properties of organic macromolecules: proteins, carbohydrates, lipids and nucleic acids.
3. Basic features of cellular organization. In particular, to be able to describe:
- the importance of cell theory.
- how to study the cellular structure.
-the differences and similarities between prokaryotic and eukaryotic cells.
- structure and function of cell organelles.
- structure and function of the cytoskeleton.
-structure and function of the extracellular matrix.
4. Basic features of biological membranes. In particular, to be able to describe:
- the structure and functions that regulate the interaction between cells.
- passive and active transport mechanisms.
-the role and the various forms of junctions between cells.
5. Fundamental characteristics of the flow of energy through living organisms. In particular, to be able to describe:
- the principles of thermodynamics applied to biological systems.
- the structure and functions of enzymes.
- anabolic and catabolic reactions.
- energy transfer: redox reactions.
- the metabolic pathways of energy release.
- the mechanisms of ATP production in aerobiosis and anaerobiosis.
- the regulation of cellular respiration.
6. Basic features of the flow of genetic information in living organisms. In particular, to be able to describe:
- the structure and function of chromosomes, mitosis and meiosis.
-the DNA: a macromolecular depository of the genetic information of living matter.
-RNA and protein synthesis: mechanisms that regulate gene expression.
- gene regulation: mechanisms that allow the control of gene expression.
7. Fundamental characteristics and the differences between living systems together with the most important principles of systematics. In particular, to be able to describe:
-Viruses and bacteria (bacteriophages, lithic reproductive cycle, temperate viruses, animal and plant viruses, viroids and prions, archaea bacteria and eubacteria).
Issues related to gender difference will be addressed as part of the discussion. In detail, biological gender differences will be analyzed to understand the mechanisms through which these differences affect health status and disease onset.